Discrete Approximation of Symmetric Jump Processes on Metric Measure Spaces

نویسندگان

  • Zhen-Qing Chen
  • Panki Kim
  • Takashi Kumagai
چکیده

In this paper we give general criteria on tightness and weak convergence of discrete Markov chains to symmetric jump processes on metric measure spaces under mild conditions. As an application, we investigate discrete approximation for a large class of symmetric jump processes. We also discuss some application of our results to the scaling limit of random walk in random conductance. AMS 2010 Mathematics Subject Classification: Primary 60B10, 60J25; Secondary 60J35, 60G52, 60J75.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of heat kernel estimates for symmetric jump processes on metric measure spaces

In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping kernels, modifications of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particu...

متن کامل

Laws of the Iterated Logarithm for Symmetric Jump Processes

Based on two-sided heat kernel estimates for a class of symmetric jump processes on metric measure spaces, the laws of the iterated logarithm (LILs) for sample paths, local times and ranges are established. In particular, the LILs are obtained for β-stable-like processes on α-sets with β > 0.

متن کامل

On Heat Kernel Estimates and Parabolic Harnack Inequality for Jump Processes on Metric Measure Spaces

In this paper, we discuss necessary and sufficient conditions on jumping kernels for a class of jump-type Markov processes on metric measure spaces to have scale-invariant finite range parabolic Harnack inequality.

متن کامل

Notes on Heat Kernel Estimates and Parabolic Harnack Inequality for Jump Processes on Metric Measure Spaces

In this paper, we discuss necessary and sufficient conditions on jumping kernels for a class of jump-type Markov processes on metric measure spaces to have scale-invariant finite range parabolic Harnack inequality. AMS 2000 Mathematics Subject Classification: Primary 60J75 , 60J35, Secondary 31C25 , 31C05. Running title: Notes on Heat Kernel Estimates and Parabolic Harnack Inequality

متن کامل

Construction of diffusion processes on fractals, d-sets, and general metric measure spaces

We give a sufficient condition to construct non-trivial μ-symmetric diffusion processes on a locally compact metric measure space (M,ρ, μ). These processes are associated with local regular Dirichlet forms which are obtained as continuous parts of Γ-limits for approximating non-local Dirichlet forms. For various fractals, we can use existing estimates to verify our assumptions. This shows that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011